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Abstract 

In this work, exponential transformation is applied for nearly singular boundary 
element integrals in elasticity problems. Accurate evaluation of nearly singular 
integrals is an important issue in the implementation of the boundary element 
method (BEM). In this paper, exponential transformation is firstly developed to 
evaluate nearly singular boundary integrals in elasticity problems. In our work, 
firstly, a novel ( , )  coordinate system is introduced. Then an improved 
exponential transformation is constructed in the new coordinate system. 
Furthermore, to perform integrations on irregular elements, an adaptive 
integration scheme considering both the element shape and the nearest point 
associated with the improved transformation is employed. Compared with 
conventional methods, we use the nearest point instead of the projection point. 
So, the drawbacks of how to subdivide the integration element into subtriangles 
with fine shapes can be overcome. Numerical examples are presented to verify 
the proposed method. Results demonstrate the accuracy and efficiency of our 
method. 
Keywords: nearly singular integrals, boundary element method, boundary face 
method, exponential transformation. 

1 Introduction 

Near singularities are involved in many boundary element method (BEM) 
analyses of engineering problems, such as problems on thin shell-like structures 
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[1–3], the crack problems [4], the contact problems [5], as well as the sensitivity 
problems [6]. Accurate and efficient evaluation of nearly singular integrals with 
various kernel functions of the type O (1 / )r  is crucial for successful 
implementation of the boundary type numerical methods based on boundary 
integral equations (BIEs), such as the boundary element method (BEM), the 
boundary face method (BFM) [7, 8]. A near singularity arises when a source 
point is close to but not on the integration elements. Although these integrals are 
really regular in nature, they can’t be evaluated accurately by the standard 
Gaussian quadrature. This is because the denominator r, the distance between the 
source and the field point, is close to zero but not zero. The difficulty 
encountered in the numerical evaluation mainly results from the fact that the 
integrands of nearly singular integrals vary drastically with respect to the 
distance. Effective computation of nearly singular integrals has received 
intensive attention in recent years. Various numerical techniques have been 
developed to remove the near singularities, such as semi-analytical or analytical 
integral formulas [9, 10], the sinh transformation [10–13], polynomial 
transformation [14], adaptive subdivision method [7, 15, 16], distance 
transformation technique [8, 17–20], the PART method [21–23], and the 
exponential transformation [24–27]. Most of them benefit from the strategies for 
computing singular integrals. Among those techniques, the exponential 
transformation technique seems to be a more promising method for dealing with 
different orders of nearly singular boundary element integrals. In this paper, we 
develop the exponential transformation technique for thin structures in 3D 
boundary element method in ( , )   coordinate system.  
     In our method, first a ( , )   coordinate system is introduced. This system is 
very similar to the polar system, but its implementation is simpler than the polar 
system and also performs efficiently. Then an improved exponential 
transformation is constructed in the new coordinate system. Using the proposed 
transformation, the integrals with near singularities can be accurately calculated. 
Furthermore, an element subdivision technique considering both the element 
shape and the positions of the nearest point is introduced in combination with the 
improved transformation to perform integrations on irregular elements. In our 
method, we use the nearest point instead of the projection point. This is because 
when the projection point is outside the integration element, how to subdivide 
the integration element into subtriangles with fine shapes is difficult [27]. 
However, the nearest point is always located in the integration element. With our 
method, the nearly singular boundary element integrals of regular or irregular 
elements can be accurately and effectively calculated. Numerical examples are 
presented to validate the proposed method. Results demonstrate the accuracy and 
efficiency of our method. 

2 Boundary integral formulations 

In this section, we will give a general form of the nearly singular integrals over 
3D boundary elements. First we consider the boundary integral equations for 3D 
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elasticity problems. The well-known self-regular BIE for elasticity problems in 
3-D is 
 0 ( ( ) ( )) ( , ) ( ) ( , )j j ij j iju u T d t U ds y s y s s y

 
       (1) 

where s and y represent the field point and the source point in the BEM, with 
components si and yi, i=1,2,3, respectively. 
     Eq. (1) is discretized on the boundary   by boundary elements ( 1 )e e N    

defined by interpolation functions. The integral kernels of Eq. (1) become nearly 
singular when the distance between the source point and integration element is 
very small compared to the size of integration element. And the integrals in 
Eq. (1) become nearly singular with different orders, namely, ( , )ijU s y with near 

weak singularity, and ( , )ijT s y  with near strong singularity. In this paper, we 

develop the exponential transformation method for various boundary integrals 
with near singularities of different orders. The new method is detailed in 
following sections. For the sake of clarity and brevity, we take following 
integrals as a general form to discuss: 

 
2

( , )
, 1,2,3

lS

f
I dS l r

r

x y
x y     (2) 

where f is a smooth function, x and y represent the field point and the source 
point in BEM, with components xi and yi, respectively. S represents the boundary 
element. We assume that the source point is close to S, but not on it. 

3 Construction of exponential transformation  

3.1 New coordinate system 

To construct the local ( , )   system as shown in Fig. 1, the following mapping 
scheme which is used for calculating weakly singular integrals [7, 8] is used: 

 

Figure 1: New system ( , )  . 

     It is different to obtain the coordinates t1 and t2 in ( , )   system compared 
with the polar coordinate system above, which can be written as: 
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     The Jacobian for the transformation from 1 2( , )t t  system to ( , )   system is 
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
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 1 2 2 1 2 1 2 1
1 2 1 2 1 2 1 2 1 2 1 2S t t t c c t t t c t t c        (4) 

     Using Eq. (4) and following Ma’s method [17–19],  
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 (5) 

where 
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               
 (6) 

     Using Eqs. (3)–(6), we can easily obtain the distance function [17–19] in a 
new form: 

 2 2 2 2 3
0( )( ) ( ) ( )k k k k kr x y x y A r O         (7a) 

 2 2 2 3
0( ) ( )kr A r O      (7b) 

      Using Eqs. (7a)–(7b), Eq. (2) can be written as:    

 
1 1

2 2 2
0 0

( , ) ( , )
=

( ( ))l l
m

f g
I d d d

r

x y    
  

 
    (8) 

where 0( )
( )

r

A
 


 , ( ) ( ) ( )k kA A A   , and ( , )g   is a smooth function. 

3.2 Improved exponential transformation 

In order to obtain a reasonable transformation for each case, the distance r is 
approximated by the Taylor expansion (7a) and (7b) without considering higher 
orders. However, in actual computation r is still the distance from the source 
point to the field point. We explain how to construct different transformations. 
The process consists of five steps and each step is described briefly below. 
      From Eq. (8) we can analyze that the near singularity is essentially related to 
the radial variable . So we will construct a more robust and efficient 
transformation for the radial variable  . 
     First we only consider the radial variable integral which depicts near 
singularity in the Eq. (8) as follows 

 
1

1 2 2 2
0

( , )

( ( ))l

g
I d

  
  


  (9) 

     Second we make a stretching transformation for Eq. (9)  

 0 1r   (10) 

     Substituting Eq. (10) into Eq. (9), we have 
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     Then we make a translation transformation for Eq. (11), respectively 

 2 1 1    (12) 

      This step is employed to adjust the lower limit of the integration variable for 
the afterward logarithmic transformation. 
     Substituting Eq. (12) into Eq. (11), results in 
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     In the four steps, we smooth out the rapid variations of the integrand by the 
following logarithmic transformation 

 3 2log( )   (14) 

     Substituting Eq. (14) into Eq. (13), Eq. (13) can be expressed as 
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     Using the good properties of the logarithmic function [24–27], it can easily be 
proved that the transformed integrand has much lower gradient. 
     Finally, adjusting the integration interval within [-1, 1] for performing the 
standard Gaussian quadrature directly, we propose the following transformation. 

 3 2 4 2k k    (16) 

where 2
0

1 1
log( 1)

2
k

r
   

     We integrate all the transformations detailed above and can obtain the final 
transformation as 

 2 2
0 ( 1)k kr e     (17) 

     It should be noted that the exponential transformation is similar to these in 
Refs. [24, 25]. However, the deductions in this paper are very different from 
those given in Refs. [24, 25]. We construct the transformations in a general way 
based on the approximate distance function derived from first-order Taylor 
expansion. Moreover, for the first time, the exponential transformation is applied 
for evaluating nearly singular integrals in 3D elasticity problems. 

4 Adaptive element subdivision  

The element subdivision is indispensible for treating the nearly singular integrals 
in the 3D cases as in Refs. [7, 8, 17–20]. In this section, we subdivide an 
integration element in a suitable pattern considering both element shape and the 
position of the nearest point in the element. Adaptive integration based on 
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element subdivision to calculate integrals is employed just as a combination for 
the exponential transformation [24–27]. The element subdivision technique is 
very similar to that discussed in Ref. [8]. However, we use the nearest point 
instead which in the most close point to the source point in the element instead of 
the projection point. 
 

 

Figure 2: Subdivisions of quadrilateral element depending on the nearest 
point. 

     Note that although the original quadrangle has a fine shape, the four 
subtriangles may have poor shapes depending on the position of xc (the nearest 
point) (see Fig. 2.(a)). Obtaining triangles of fine shape seems more difficult by 
direct subdivision for irregular initial elements as shown in Fig. 2(a) even xc is 
located at the element center. If the angle denoted by  , Fig. 2(b)–2(f) between 
two lines in common with end point xc in each triangle is larger by a certain 
value 2 3  and even tends to  , numerical results will become less accurate.  

     To solve the troubles described above, we have developed an adaptive 
subdivision for an arbitrary quadrilateral element. The original element is 
divided into several triangles and additional quadrangles, which is different from 
these as shown in Fig. 2 (a1)–(f1). The adaptive subdivision consists of three 
main steps described briefly as follows: 
First, compute the distances in the real-world-coordinate system form xc to each 
edge of the element and obtain the minimum distance d. 
     Then, based on d, we construct a box defined in parametric system, but with 
square shape in the real-world-coordinate system as can as possible, to well 
cover xc. 
     Finally, triangles are constructed from the box and additional quadrangles are 
created outside the box in the element. 
     Applying the strategy above, adaptive subdivisions for the elements in Fig. 2 
with suitable patterns are shown in Fig. 2(a1)–(f1). For each triangle, the nearly 
singular integrals are calculated by the scheme discussed in Section 3. However, 
for each quadrangle, nearly singular integrals will arise but not severe, which can 
be calculated by adaptive integration scheme based on the element subdivision 
technique discussed in Refs. [7, 8].  
     It should be noted that, although the element subdivision is adopted, the 
computational cost is reduced dramatically compared with the conventional 
subdivision technique to compute nearly singular integrals on the whole element. 
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This is because that the integrals on the local region of the element, which is 
more close to the source point, are calculated by the new variable 
transformations technique.  
     It is also should be noted that, compared with the conventional subdivision 
methods, we subdivide the element in three triangles around the nearest point xc 
which is which is the most close point to the source point in the element instead 
of the projection point. So, when the projection point is located outside the 
element, we still can get subtriangles with fine shapes [27].  

5 Numerical examples 

5.1 Example 1: a thin plate problem 

The geometry, boundary conditions, and the model for the problem are shown in 
Fig. 3. We assume the thickness is 0.01. The Young’s modulus is 1 and the 
Poisson’s ratio is 0.25. In order to assess the accuracy of the present method, 
boundary conditions of Dirichlet type are imposed on all faces corresponding to 
quadratic exact solutions. And the solutions are as follows: 

 

2 2 2

2 2 2

2 2 2

2 3 3

3 2 3

3 3 2

x

y

z

u x y z

u x y z

u x y z

    
   
   

 (18) 

 

 

Figure 3: (a) A thin plate (b) Sample points (c) Discretization of the thin plate 
(d) Slender elements. 

     As shown in Fig. 3, the BFM model with 240 8-node quadrilateral elements 
and the total number of nodes is 770. For side surfaces, 8-node discontinuous 
quadrilateral elements are used. As illustrated in Fig. 3, the elements are slender 
elements in the side surfaces. To evaluate the nearly singular integrals, the 
improved transformation combined with the element subdivision technique is 
applied. The sample points are distributed on the boundary. The boundary 
sample points are well-distributed on isoparametric line segment from (2, -2) to 
(-2, 2) in the parametric space of the surface (y=0.005). Results at the sample 
points are illustrated in Fig. 4.  
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     As shown in Fig. 4, with the proposed method, the near singularities are 
removed efficiently and accurate numerical results have been obtained. The 
slender element, of which the length and width ratio is larger than 10, is applied 
for long and narrow surfaces in this example. In our method, however, the 
accuracy is not influenced by elements with poor quality. 
 

 

Figure 4: Results at the sample points. 

5.2 Example 2: an elbow pipe problem  

In order to show the advantages of our method, a problem with more 
complicated geometry is solved here [7]. The geometry and its main dimensions 
are shown in Figure 5. The meshes of the model are also shown in Fig. 5. 500 8-
node quadrilateral elements are used and the total number of nodes is 1768. The 
boundary evaluation points are uniformly distributed along the middle ring. 
Dirichlet boundary conditions according to the analytical solutions Eq. (18) are 
imposed on all the faces of the elbow pipe. The elbow pipe is a thin shell 
structure, thus nearly singular integrals arises, which is evaluated by the scheme 
described in Section 3 and Section 4. Numerical results at the sample points are 
shown in Fig. 6. From Fig. 7, it can be seen that the numerical results obtained 
by our method is in good agreement with the exact solutions. Note that nearly 
singular integrals can be accurately computed by the exponential transformation, 
so the proposed method can be used for the analysis of thin structures. 
 

 

Figure 5: An elbow pipe and its main dimensions [7]. 

398  Boundary Elements and Other Mesh Reduction Methods XXXVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



 

Figure 6: Discretization of the elbow pipe. 

 

Figure 7: Results at the boundary points. 

6 Conclusions 

This work presented exponential transformation coupled with adaptive 
subdivision technique for nearly singular integrals which appear in the 
application of BEM for elasticity problems. By applying the proposed method in 
the BEM, the number of integral points in the near singular integral patches has 
been reduced significantly. To perform integration on irregular elements, an 
adaptive integration scheme considering the element shape and the nearest point 
in combination with the improved transformation has been introduced. 
Numerical examples have been presented to verify the proposed method. Results 
demonstrate the accuracy and efficiency of our method. For nearly hypersingular 
integrals or other nearly singular integrals of higher orders, however, the present 
method is not so effective. Using the Ma’s method [18, 19], it is easy to extend 
our method for nearly hypersingular integrals. 
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